## Wave Phenomena

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Single Slit Diffraction

- Consider light incident on a slit of width $\mathbf{a}$, in front of a screen D m away
- The length from the top of the slit to the screen is $\mathbf{L}$
- The length from the
 bottom of the slit to the screen is $L+\lambda$
- From the diagram $\sin \theta=\frac{\lambda}{a}$
- For small angles, this is equivalent to $\theta=\frac{\lambda}{a}$
- This will calculate the angle of the first minimum
- Note: The path length difference in the center of the slit with be $\lambda / 2$. This will interfere with the waves from
the edges resulting in total destructive interference


## Example

- Light of wavelength 550 nm is incident on a slit of width $1.5 \mu \mathrm{~m}$. Calculate the width of the central maximum.

$$
\begin{gathered}
\theta=\frac{\lambda}{b}=\frac{550 \times 10^{-9} \mathrm{~m}}{1.5 \times 10^{-6} \mathrm{~m}}=0.37 \text { radians } \\
\text { Central maximum }=0.74 \text { radians }
\end{gathered}
$$

## Double Slit Interference

- The path difference between the two slits is $d \sin \theta$
- For the point y to be a bright fringe (constructive interference) the path difference must be $\lambda$

- Therefore $d \sin \theta=\lambda$
- From the diagram $\tan \theta=\frac{y}{D}$
- For small angles (measured in radians), $\sin \theta=\tan \theta=\theta$
- Therefore $\frac{\lambda}{d}=\frac{y}{D}$
- Rearranging gives

$$
y=\frac{\lambda D}{d}
$$

## Example

- Monochromatic light is incident on a double slit with spacing of 0.50 mm . The bright fringes are spaced 2.5 mm apart on a screen 2.0 m away. What is the wavelength of the light?

$$
\begin{aligned}
& s=\frac{\lambda D}{d} \\
& \lambda=\frac{s d}{D}=\frac{\left(2.5 \times 10^{-3} \mathrm{~m}\right)\left(0.5 \times 10^{-3} \mathrm{~m}\right)}{2.0 \mathrm{~m}}=6.25 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Diffraction Grating



- The spacing between the slits is small, which makes the angle $\theta$ large for a fixed wavelength and $n$
- Therefore we cannot use the small angle approximation
- A diffraction grating usually gives the lines per mm, $N$, instead of the distance between the lines
- This value must be converted to spacing, $d$, to use the diffraction grating equation

$$
d=\frac{1}{N}
$$

## Example

- A diffraction grating having 600 lines per mm is illuminated with a parallel beam of monochromatic light normal to the grating. This produces a second order maximum which is observed at $42.5^{\circ}$ to $\qquad$ the straight through direction. Calculate the wavelength of the light.

$$
\begin{gathered}
n \lambda=d \sin \theta \\
d=\frac{1}{600(1000)}=1.67 \times 10^{-6} \mathrm{~m} \\
\lambda=\frac{d \sin \theta}{n}=\frac{\left(1.67 \times 10^{-6} \mathrm{~m}\right) \sin \left(42.5^{\circ}\right)}{2} \\
\lambda=5.63 \times 10^{-7} \mathrm{~m}
\end{gathered}
$$

## Thin Films

- When light is incident on the thin film it is both reflected and refracted at the surface
- The reflected light undergoes a phase shift of $\pi$ radians

- The refracted light pass through the thin film a distance of $n d$ where $n$ is the index of refraction and $d$ is the thickness of the film
- The light then partially reflects off the bottom of the film and passes through the film again before reflecting and refracting from the top surface
- Therefore the total path length of the light in the film is $2 d n$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
- Normally the path difference required for constructive interference is $\lambda$
- However, in the case of a thin film, the reflected ray undergoes a phase change of $\pi$ radians
- This is equivalent to a path difference of $\lambda / 2$
- Therefore destructive interference will occur when the path length differs by $\lambda$ and constructive interference will occur when the path length differs by $\lambda / 2$



## Example

- A film of oil ( $n=1.45$ ) floats on a layer of water ( $n=1.33$ ) and is illuminated by light at normal incidence. When viewed from near normal incidence a particular region of the film appears red with an average wavelength of about 650 nm . Calculate the average thickness of the film.

| $2 d n=\left(m+\frac{1}{2}\right) \lambda$ |
| :---: |
| $d=\frac{\left(m+\frac{1}{2}\right) \lambda}{2 n}=\frac{\frac{1}{2}\left(650 \times 10^{-9} \mathrm{~m}\right)}{2(1.45)}=1.1 \times 10^{-7} \mathrm{~m}$ |

## Resolution

- Light from a distant star will, upon passing through a circular aperture, diffract

- If the two sources are close, we have a hard time deciding if there are two sources or just one

- If the sources are far apart, they are said to be "resolved"
- We can easily tell that there are two sources
$\qquad$
$\qquad$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Rayleigh Criterion

$\qquad$

- The two sources are just resolved if the $\qquad$ central maximum of the diffraction pattern of one source falls on the first minimum of the other




## Resolution Equation

- For a linear slit, the first minimum occurs at

$$
\theta=\frac{\lambda}{b}
$$

- For a circular aperture of diameter $b$, the first minimum occurs at

$$
\theta=1.22 \frac{\lambda}{b}
$$

## Example

- A student observes two distant point sources of light of wavelength 550 nm . The angular separation as seen by the student is $2.5 \times 10^{-4}$ radians. Calculate the diameter of the of the student's pupil if the images are just resolved.

$$
\begin{gathered}
\theta=1.22 \frac{\lambda}{b} \\
b=1.22 \frac{\lambda}{\theta}=\frac{1.22\left(550 \times 10^{-9} \mathrm{~m}\right)}{2.5 \times 10^{-4} \text { radians }}=2.7 \times 10^{-3} \mathrm{~m}
\end{gathered}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Diffraction Gratings

$\qquad$

- Diffraction grating are used to separate $\qquad$ light of different colors
- The more lines (slits) we have, the better
$\qquad$ the resolution will be
- The resolvance, $R$, for a diffraction grating is defined as the ratio of the wavelength of light $\lambda$ to the smallest difference in wavelength that can be resolved by the grating $\Delta \lambda$
- The resolvance is also equal to $m N$ where $N$ is the total number of slit illuminated by the incident beam and $m$ is the order of the $\qquad$ diffraction

$$
R=\frac{\lambda}{\Delta \lambda}=m N
$$

- The larger the resolvance, the better a device can resolve


## Example

- Two lines in the emission spectrum of sodium have wavelengths of 589.0 nm and 589.6 nm . Calculate the number of lines per mm needed by a diffraction grating if the lines are to be resolved in the second order spectrum with a beam of width 0.10 mm .
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$$
\begin{gathered}
R=\frac{\lambda}{\Delta \lambda}=m N \\
N=\frac{\lambda}{\Delta \lambda m}=\frac{589.0 \mathrm{~nm}}{(586.6-589.0 \mathrm{~nm}) 2} \quad \text { or } \quad N=\frac{\lambda}{\Delta \lambda m}=\frac{589.6 \mathrm{~nm}}{(589.6-589.0 \mathrm{~nm}) 2} \\
N=491.3
\end{gathered}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$

Note: Diffraction gratings are not usually sold with this number of lines per mm. A normal amount would be 5000 lines per mm .

## Doppler Effect

- When there is relative motion between a $\qquad$ source of waves and an observer, the observed frequency of the waves is $\qquad$ different to the frequency of the source of the wave


## Stationary Source

- Sound waves are produced at a constant frequency $f_{0}$, and the wavefronts propagate symmetrically away from the source at a constant speed $v$
- The distance between wavefronts is the wavelength.
- All observers will hear the same frequency, which will be equal to the actual frequency of the source

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Moving Source

- A source producing the same frequency as before is moving to the right
- The center of each new wavefront is now slightly displaced to the right
- The wavefronts begin to bunch up on the $\qquad$ right side (in front of) and spread further apart on the left side (behind) of the source
- An observer in front of the source will hear a higher frequency $f^{\prime}>f_{0}$, and an observer behind the source will hear a lower frequency $f^{\prime}<f_{0}$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
- The frequency that the observer hears is $\qquad$ calculated as follows:

$$
f^{\prime}=f\left(\frac{v}{v \pm u_{s}}\right)
$$

Source is moving with speed $u_{s}$

## Moving Observer

- If the sound source is stationary and the observer is moving the same effect happens
- The apparent frequency increases as the observer moves towards the source
- The apparent frequency decreases as the observer moves away from the source
- The frequency heard by the observer in $\qquad$ this case is calculated as follows:

$$
f^{\prime}=f\left(\frac{v \pm u_{o}}{v}\right)
$$

Observer is moving with speed $u_{0}$

## Light

- Light waves are also susceptible to the
$\qquad$ Doppler effect
- If the source (or observer) is traveling at a
$\qquad$ speed much less than the speed of light we can approximate the observed change
$\qquad$ in frequency (or wavelength) as follows:

$$
\frac{\Delta f}{f}=\frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}
$$

$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Standing Waves

$\qquad$

- Under the right circumstances waves can $\qquad$ be formed in which the positions of the crests and the troughs do not change
- Two travelling waves of equal amplitude and equal frequency travelling with the same speed in opposite directions are superposed
- This is a standing wave

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Special Terms

$\qquad$

- Node
- Points where the displacement is always zero
- Antinode
- Displacement is a maximum
- Note: the maximum is not always the same maximum

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Harmonics
- We can have different modes of vibration
or harmonics
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
- The first mode of vibration has the lowest frequency and is called the first harmonic.
- The next modes of vibration are the second
$\qquad$ harmonic, third harmonic,...
- Each harmonic is an interval of the
$\qquad$ fundamental
$-f_{2}=2 f_{1}$ $\qquad$
$-f_{3}=3 f_{1}$
$-f_{4}=4 f_{1}$


## Standing Waves on a String

$\qquad$

- There is a node at each end where the $\qquad$ string is attached.

- First harmonic (fundamental)

$$
\begin{gathered}
L=\frac{\lambda_{1}}{2} \\
f_{1}=\frac{v}{\lambda_{1}} \quad \lambda_{1}=2 L \\
f_{1}=\frac{v}{2 L}
\end{gathered}
$$

- Second harmonic

$$
\begin{gathered}
L=\frac{2 \lambda_{2}}{2} \\
f_{2}=\frac{v}{\lambda_{2}} \quad \lambda_{2}=\frac{2 L}{2} \\
f_{2}=\frac{2 v}{2 L}=2 f_{1}
\end{gathered}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

- Third harmonic

$$
\begin{gathered}
L=\frac{3 \lambda_{3}}{2} \\
f_{3}=\frac{v}{\lambda_{3}} \quad \lambda_{3}=\frac{2 L}{3} \\
f_{3}=\frac{3 v}{2 L}=3 f_{1}
\end{gathered}
$$



- First harmonic (fundamental)

$$
\begin{gathered}
\text { 1s Harmonic } \\
L=\frac{\lambda_{1}}{2} \\
f_{1}=\frac{v}{\lambda_{1}} \quad \lambda_{1}=2 L \\
f_{1}=\frac{v}{2 L}
\end{gathered}
$$

- Second harmonic

$$
\begin{gathered}
L=\frac{2 \lambda_{2}}{2} \\
f_{2}=\frac{v}{\lambda_{2}} \quad \lambda_{2}=\frac{2 L}{2} \\
f_{2}=\frac{2 v}{2 L}=2 f_{1}
\end{gathered}
$$

- Third harmonic

$$
\begin{gathered}
\text { 3rid Harmonic } \\
f_{3}=\frac{v}{\lambda_{3}} \quad \lambda_{3}=\frac{2 L}{3} \\
f_{3}=\frac{3 v}{2 L}=3 f_{1}
\end{gathered}
$$

$\qquad$

## Standing Waves in a Closed Pipe

$\qquad$

- A pipe that is closed at one end has a node at the closed end and an antinode at the open end

- First harmonic (fundamental) $\qquad$

$\qquad$
$\qquad$

$$
L=\frac{\lambda_{1}}{4}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$$
f_{1}=\frac{v}{\lambda_{1}} \quad \lambda_{1}=4 L
$$

$\qquad$

$$
f_{1}=\frac{v}{4 L}
$$

$\qquad$
$\qquad$

- Third harmonic

$$
\begin{gathered}
L=\frac{3 \lambda_{3}}{4} \\
f_{3}=\frac{v}{\lambda_{3}} \quad \lambda_{3}=\frac{4 L}{3} \\
f_{3}=\frac{3 v}{4 L}=3 f_{1}
\end{gathered}
$$

$\qquad$


